Tai Meng

Project 1: Cell Projection

Abstract:

This document will have three main parts. In part one, I will divide the project into three main stages, and present the objectives for each. In part two, I will discuss my current progress. In part three, I will provide a basic architectural design of the project.

1.0 Project Objectives

1.1 First Stage Objectives:

At the end of this stage, the projection software that I produce will be able to read in the standard volume data files (data sampled on a rectilinear grid) that the graphics lab uses. The program will then store the data points as vertices for voxels (which are stored in a 3D array). Each voxel will be tetrahedralated minimally (5 tetrahedra per voxel). The tetrahedra will then be displayed, in back-to-front order, using orthographic projection in OpenGL. There will be a GUI interface that allows the user to rotate, translate, and zoom in/out on the data displayed.

1.2 Second Stage Objectives:

Various other tetrahedralation techniques will be integrated into the program; the user will be able to select a desired technique through a GUI interface. The order that I shall attempt these additional features is: Freudenthal (6 tetrahedra per voxel), Face Divided (12, and then 24), Edge-divided (48), Body-Centered Cubic (12 average), and finally, Marching Cubes (using triangles, not tetrahedra).

There will not likely be enough time for me to implement all of the above techniques, so any suggestion is welcome.

1.3 Third Stage Objectives:

During this stage, I will port the cell projection project onto BCC grid.
1.4 Fourth Stage Objectives:

This stage is optional. This stage will deal with optimization. For example, extra structures, such as look up tables, can be created to reduce the number of multiplications done when the transformation matrix is applied to the voxel set, so that each distinct value along each axis is only ever multiplied once.

I will try to optimize my code when I write it so that the overall efficiency will be good without this stage.

2.0 Current Progress

I think I can now complete stage one with little more research. Here is a sample run through of my program.

2.1 File Reading and Storage of Voxels / Data Points
First, I will read the data in from the file. File formats are the last research topic on my list for stage one. For now, I will assume that the data set is stored slice by slice, in back-to-front order, and that each slice is defined starting from the bottom left corner. I will:

1. Read in the dimension of the data set. For convenience, I will denote the size by (maxXColumns * maxYRows * maxZSlices), or (maxX * maxY * maxZ), for the x, y, and z-axes, respectively. Starting with the left, bottom, backmost corner of the data set, I will store all data points in a 1D array. I will call the array a vertex pool.

2. Initially, read two slices (maxX * maxY data points) from file. Calculate the gradients by using nearest neighbor (and consistent with the central difference fomula below).

3. Read in one more slice (and possibly discard a slice since I will only allocate enough memory for 3 slices) and calculate the gradient using the central difference formula.
· diffX = f(x-1, y, z) – f(x+1, y, z)

· diffY = f(x, y-1, z) – f(x, y+1, z)

· diffZ = f(x, y, z-1) – f(x, y, z+1)

· gradient = (diffX, diffY, diffZ)

4. Repeat steps 3 until the file reading is finished.

5. numVertices = maxX * maxY * maxZ
· vertex(x, y, z) = vertexPool[z * maxX * maxY + y * maxX + x]

6. numVoxels = (maxX – 1) * (maxY – 1) * (maxZ – 1)

· voxel(x, y, z) will have 8 vertices as indicated on the diagram in section 2.2
If the data slices are recorded in front-to-back order, or if the slice is defined starting from the top left corner (or some other variation), the stored voxels will still be in the same order; the algorithm needs to be flexible enough to accommodate a large variety of cases (of course there must be a flag in the data file indicating the ordering format of the data set). In any case, the bottom left backmost corner of the data set will be at the origin of the 1D (conceptually 3D) array.

2.2 Tetrahedra: Orthographical Projection

The projection of a tetrahedron is as follows [Images taken from Shirley and Tuchman].

Four normals are stored with each tetrahedron, one for each face, or triangle. Take the dot product of each normal with the view ray. If the product is < 0, the normal (and thus the triangle associated with it) is pointing towards the viewer, and is assigned a “+” symbol. If the product is > 0, the normal is pointing away form the viewer, and is assigned a “-“. If the normal is perpendicular to the view ray, it is assigned a “0”. Each tetrahedron will have a four digit string, each digit of which is either a “+”, a “-“, or a “0”. This string is calculated at run time, after the user has rotated the data set.

If the string contains three +’s or three –’s then the tetrahedron is of case one. Else if it contains two +’s it is of case two. Else if it has two –’s it is of case three. Else, it is of case four.

The circles on the diagram below indicate where the points defining maximum thickness are in each case. For each case, detailed comments have been placed in the code explaining how to find the two points of interest. The comments will be copied and pasted here.
[image: image1.png]oject 1 - Microsoft Word
J e ot you fnsert Fomat Tooks Table Wivdow telp

CEIEISET S @ 0 o

class la class
P .

class 1 class ab
sy @ vl

Figure 3: Classification of Tetrahedra Projections

NNOOE4E 2 -2-4

[Poge 6 sect o6 |l i Gz | i e e [O |

A Start| 2 My Computer @ Project 1 - Microso... [@]project 1 diag scratch .| £14 Palygonal Approsimati.| - WirdZip [Evaluation Ver.. | # 1008ps -Gaview | [1016PM

Now that the classification is done, we’ll need to calculate where the two actual points of intersection are. Some are simply one of the vertices. For others, intersecting the view ray with either a triangle or one or two lines finds the point of interest.

[image: image2.png]R 1006.ps - GSview 171 x]
File Edt Options View Orientation Media Help
Fie: 008,50 B, #515l_Page 0" 4B
Tetrahedron Projection Triangle Decomp osition =

v

classes la ¢ 1b

class 2z

J <

classes 3a ¢ 3b

class 4

K]

N

A=

N

4 triangles
2 triangles

1 triangle

Figure 5: Example of Class 1 Decomposition.

Figure 6: Example of Class 2 Decomposition.

of Pr and the interpolated value of the the scalar functic
Pr is then mapped via V™! to world coordinates and
distance from V"' Py (the untransformed Pr) is compute
Figure 6 shows a ray passing throngh a cllass 2 lelrahed_ri;l

>
Rstart| ZMy Computer | Y Proiect 1 -Microsoft ... | B proiect 1 ciag scratch ... | €14 Polpgonal Approsimat.| D WiriZp [Evaluation Ver.. |[F% 1006 ps - GSview | 10:24PM

Let P1 be the point closer to the viewer, and P2 be the farther point of intersection. Let P1 have opacity Alpha1 and color C1. Let P2 have opacity Alpha2 and color C2.

Alpha = 1 – e ^ [(t2 – t1) * (N2 + N1) / 2], where N2 and N1 are intensities at P2 and P1, and t2-t1 is the distance between the two points. Colors are calculated similarly, component by component.

Now that the color and opacity information is complete, divide each tetrahedron into one or more triangles, as shown on last page.

TRIANGLES ARE OBTAINED BY SUBDIVITING THE FRONT-MOST FACE(S)

Each triangle has three colors and three opacity values (two of which are 0). Use OpenGL to project the triangles using smooth (or Gouraud shading which employs barycentric interpolation).

2.3 Minimal Tetrahedralation

When each voxel is stored, it is tetrahedralated minimally. Voxels are stored implicitly. The eight vertices of the voxels will have indices of the following form:

[image: image3]
There are two ways to minimally tetrahedralize a voxel:

[image: image4.emf]

	First Way

	Color
	Key in GUI
	Tetra #
	V0
	V1
	V2
	V3
	Initial Orientation

	Red (1, 0, 0)
	1
	0
	4
	0
	1
	2
	0-+0

	Green (0, 1, 0)
	2
	1
	7
	1
	3
	2
	0-0+

	Grey scale
	3
	2
	4
	2
	1
	7
	--++

	Blue (0, 0, 1)
	4
	3
	4
	7
	6
	2
	+00-

	Cyan (0, 1, 1)
	5
	4
	4
	5
	7
	1
	+0-0

	Second Way

	Color
	Key in GUI
	Tetra #
	V0
	V1
	V2
	V3
	Initial Orientation

	Red (1, 0, 0)
	6
	0
	6
	0
	3
	2
	+-00

	Green (0, 1, 0)
	7
	1
	5
	0
	1
	3
	0-0+

	Grey scale
	8
	2
	5
	6
	0
	3
	+--+

	Blue (0, 0, 1)
	9
	3
	4
	5
	6
	0
	+-00

	Cyan (0, 1, 1)
	0
	4
	5
	7
	6
	3
	+0-0

	First Way Old

	Color
	Key in GUI
	Tetra #
	V0
	V1
	V2
	V3
	Initial Orientation

	Red (1, 0, 0)
	1
	0
	4
	5
	7
	1
	0-+0

	Green (0, 1, 0)
	2
	1
	4
	7
	6
	2
	0-0+

	Grey scale
	3
	2
	4
	2
	1
	7
	--++

	Blue (0, 0, 1)
	4
	3
	4
	0
	1
	2
	+00-

	Cyan (0, 1, 1)
	5
	4
	7
	1
	3
	2
	+0-0

	Second Way Old

	Color
	Key in GUI
	Tetra #
	V0
	V1
	V2
	V3
	Initial Orientation

	Red (1, 0, 0)
	6
	0
	4
	5
	6
	0
	+-00

	Green (0, 1, 0)
	7
	1
	5
	7
	6
	3
	0-0+

	Grey scale
	8
	2
	5
	6
	0
	3
	+--+

	Blue (0, 0, 1)
	9
	3
	5
	0
	1
	3
	+-00

	Cyan (0, 1, 1)
	0
	4
	6
	0
	3
	2
	+0-0

Each tetrahedron consists of four triangles, which are defined so that vertices of the triangles are in counter clock wise order. The triangles are used to determine the orientation of the tetrahedron (each triangle contributes to one +, - or 0)
· t0 = v0, v1, v2

· t1 = v1, v3, v2

· t2 = v0, v2, v3

· t3 = v0, v3, v1

To ensure that the diagnalization schemes are applied consistently and alternatingly:

· If the x, y, z indices of a voxel (= the indices for it’s 0th vertex) adds up to be even, then use “First Way”. If the sum is odd, use “Second Way”.
2.4 Voxels: Back to Front Ordering
Assuming that the user has rotated the data set such that the rotation matrix is R, then, applying R.inverse = R.transpose (3 swaps) to the viewRay = [0, 0, -1, 0] is equivalent to rotating the objects (faster calculations). Taking the dot product of viewRay.rotated and each of the three axes will tell us about the angle between the view ray and the axes. All vectors involved need to be normalized.

· Calculate the dot products of the x, y, z, axis and the rotated view ray, and denote the result by xDot, yDot, zDot, where all vectors involved are normalized.
· Take the absolute values of the dot products; denote them by xDotAbs, yDotAbs, and zDotAbs.
· Find the greatest of these three absolute dot products
· This finds the axis that is most “parallel” to the rotated view ray. In other words, the angle between the view ray and the axis of interest is the least among all axes.

· Let axisA = axis with the largest absolute dot product

· If axisA = zAxis:
· Since zAxis is most parallel to the view ray, xy slices will be projected.
· If zDot is negative, the z axis points towards the viewer, and the xy slices should be projected contiguously starting from the beginning (0th position) of the 1D voxel/vertex array until the end of the array. Note: he 0th element corresponds to the (0, 0, 0)th element in the conceptually 3D array.
· For index = 0; index < numVoxels; index++
· Retrieve voxel whose 0th vertex is at vertexPool[index]

· Project the voxel

· If zDot is positive, the z axis points away from the viewer, and the data set is somewhat flipped upside down. In this case, the xy slices should be projected contiguously starting from the end of the 1D voxel/vertex array until the beginning.
· For index = numVoxels -1; index >= 0; index--
· Retrieve voxel whose 0th vertex is at vertexPool[index]

· Project the voxel

· The ordering makes projection faster since contiguous elements in the voxel/vertex array can be pre-fetched into cache.

· If axisA = xAxis:

· In this case, yz slices must be projected.

· If xDot is negative
· Note that the indices for voxels can only go up to *Max – 2.
· For x = 0 to xMax-2
· For y = 0 to yMax-2
· For z = 0 to zMax-2
· Get voxel(x, y, z)
· Project voxel

· If xDot is positive

· For x = xMax-2 down to 0
· For y = 0 to yMax - 2
· For z = 0 to zMax-2

· Get voxel(x, y, z)

· Project voxel

· If axisA = yAxis:

· In this case xz slices must be projected

· If yDot is negative

· For y = 0 to yMax-2

· For x = 0 to xMax – 2

· For z = 0 to zMax – 2

· Get voxel(x, y, z)

· Project voxel

· If yDot is positive
· For y = yMax-2 down to 0

· For x = 0 to xMax – 2

· For z = 0 to zMax – 2

· Get voxel(x, y, z)

· Project voxel
2.5 Tetrahedra: Back to Front Ordering
The back-to-front ordering of the tetrahedral depends only on the orientation of the middle tetrahedron of the voxel. Note that ++++ and ---- are impossible.
If any 0’s occur in the orientation string, call removeZeroFromOrientation(), which replaces 0’s with +’s (because really, 0’s are don’t care conditions).
	Orientation of middle tetrahedron
	First Way / Keys
	Second Way / Keys

	+---
	Pmmm
	13420 [24531]
	56978 [67089]

	-+++
	Pmmm.invert
	02431 [13542]
	87965 [98076]

	-+--
	Mpmm
	03421 [14532]
	68975 [79086]

	+-++
	Mpmm.invert
	12430 [23541]
	57986 [68097]

	--+-
	Mmpm
	01324 [12435]
	58976 [69087]

	++-+
	Mmpm.invert
	42310 [53421]
	67985 [78096]

	---+
	Mmmp
	01423 [12534]
	56879 [67980]

	+++-
	Mmmp.invert
	32410 [43521]
	97865 [08976]

	
	
	
	

	++--
	Ppmm
	34201 [45312]
	69758 [70869]

	--++
	Ppmm.invert
	10243 [21354]
	85796 [96807]

	+-+-
	Pmpm
	13204 [24315]
	59768 [60879]

	-+-+
	Pmpm.invert
	40231 [51342]
	86795 [97806]

	+--+
	Pmmp
	14203 [25314]
	56789 [67890]

	-++-
	Pmmp.invert
	30241 [41352]
	98765 [09876]

Questions and Notes:

>> How do we use the gradients? Plug it into OpenGL’s normal pool? YES

>> Other projects? Two of them? YES, TWO IN ALL

· Look up: Max Nelson (or Nelson Max): subject: Optical Model… TUCG
· Using the 10 tetrahedra in the tetrahedral pool, create a function that randomly generates a rotation matrix, R(x, y, z). Apply the rotation matrix to the 10 tetrahedra and tabulate which case each tetrahedron’s orientation belongs. I estimate that roughly 60% will be case 2 (tested this by example in OpenGL).

7 (x+1, y+1, z+1)

6 (x, y+1, z+1)

5 (x+1, y, z+1)

4 (x, y, z+1)

3 (x+1, y+1, z)

2 (x, y+1, z)

1 (x+1, y, z)

0 (x, y, z)

PAGE
9

